The effect of self-assembled nanofibrils on the morphology and microstructure of poly(L-lactic acid)
نویسنده
چکیده
The morphologies and microstructures of neat 1,3:2,4-dibenzylidene-D-sorbitol (DBS) and DBS/ poly(L-lactic acid) (PLLA) samples have been investigated by polarizing optical microscopy (POM) and scanning electron microscopy (SEM). The morphology of neat DBS samples prepared from solution had unspecific structures, and no fibrils formed. In comparison, DBS molecules self-assembled into fibrils with diameters ranging from 100 nm to 1 mm when samples were prepared from the melt. The DBS fibrils were also found in DBS/PLLA systems, but the average diameter was only around 20 nm. The DBS architectures could be well tuned by varying the DBS contents and PLLA crystallization temperatures. Micron-sized fibrillar rings or disks due to the aggregation of DBS nanofibrils were found using SEM in samples with DBS contents more than 3 wt% and crystallized above 120 C. Meanwhile, ‘‘concentric-circled’’ PLLA spherulites were observed by POM. The DBS nanofibrils largely formed at the circles, but some nanofibrils formed beyond the circles and were dispersed in the PLLA spherulites. These dispersed nanofibrils affected the orientation of PLLA lamellae and caused a change in birefringence, yet the growth rate of PLLA was not significantly influenced by the formation of DBS nanofibrils. In addition, porous PLLA structures could be obtained by solvent extraction of the DBS nanofibrils.
منابع مشابه
Investigation into the effect of UV/Ozone Irradiation on the dyeing behaviour of Poly(lactic acid) and Poly(ethylene terephthalate) Substrates
The effect of UV/Ozone irradiation together with the pretreatments using distilled water, hydrogen peroxide, and hydrogen peroxide/sodium silicate solutions on the dyeing depth of the poly(lactic acid), PLA, and poly(ethylene terephthalate), PET, fabrics by the application of disperse dyes were investigated and the results were compared with that of untreated fabrics. The results showed that th...
متن کاملNano-Structure Roughening on Poly(Lactic Acid)PLA Substrates: Scanning Electron Microscopy (SEM) Surface Morphology Characterization
Scanningelectron microscopy (SEM) has been utilized to examine the morphology and topography alterations in the surface of Poly(Lactic Acid)(PLA) fabrics due to UV/Ozoneirradiation. In the past decade, a growing attention in the usage of “Green Techniques” in industrial applications has been observed owing to many benefits such as low impurities and their relatively low cost to substitute th...
متن کاملFunctional Properties of Biodegradable Nanocomposites from Poly Lactic Acid (PLA)
Nanocomposite composed of organoclay(Cloisite 20A-C20A) and Poly lactic acid (PLA) was prepared by solvent casting method. Physical, mechanical, thermal, barrier and microstructure properties of the composite were studied. X-Ray diffraction (XRD) patterns and scannin...
متن کاملEffect of different mass ratio of PLA: PEG segments in PLA-PEG-PLA copolymers on the physicochemical characterization and DNA release profile
Background: Adapting controlled release technologies to the delivery of DNA has the great potential to overcome extracellular barriers that limit gene delivery. This study investigates the effect of different mass ratio of PLA: PEG in the various tri block poly (lactic acid)-poly (ethylene glycol) - Poly (lactic acid) copolymer (PLA-PEG-PLA) on the properties of the resulting nanoparticles. Me...
متن کاملComparison of Proliferation and Osteoblast Differentiation of Marrow-Derived Mesenchymal Stem Cells on Nano- and Micro-Hydroxyapatite Contained Composite Scaffolds
Bones constructed by tissue engineering are being considered as valuable materials to be used for regeneration of large defects in natural bone. In an attempt to prepare a new bone construct, in this study, proliferation and bone differentiation of marrow-derived mesenchymal stem cells (MSCs) on our recently developed composite scaffolds of nano-, micro-hydroxyapatite/ poly(l-lactic acid) were ...
متن کامل